Assimilation Efficiencies and Gas Exchange Responses of Four Salix Species in Elevated CO2 under Soil Moisture Stress and Fertilization Treatments

Author:

Major John E.,Mosseler Alex,Malcolm John W.

Abstract

Assimilation to the internal CO2 (ACi) response curve and gas exchange parameters were quantified for four North American willows ((Salix cordata (COR), S. discolor (DIS), S. eriocephala (ERI), and S. interior (INT)) grown in a 2 × 2 factorial of atmospheric CO2 and soil moisture treatments to see how they would respond to climate change factors. After the first year of greenhouse growth under said treatments, we saw no difference in the aboveground stem biomass between CO2 treatments. Thus, in the second year, a second experiment on a subset of well-watered, coppiced willows was conducted in a 2 × 2 factorial of atmospheric CO2 and soil fertilization (FERT) treatments. In both experiments, the maximum rate of carboxylation (Vcmax) significantly declined for all four species in response to elevated CO2 (eCO2). In response to a drought treatment (DRT), Vcmax declined, except for INT, which increased Vcmax. In both experiments, INT had the greatest Vcmax, maximum rate of electron transport (Jmax), and triose phosphate utilization, followed by COR and ERI, with DIS having the lowest values. FERT resulted in a strong increase in assimilation (A) and stomatal conductance (Gwv) by 92 and 119%, respectively. Gwv is the primary driver and A is a minor driver of water use efficiency (WUE) under DRT. FERT mitigated the Vcmax and A downregulation in eCO2, but eCO2 did not mitigate the DRT downregulation effect. Differences between INT and the other three willows in a number of adaptive traits and responses related to drought may reflect the evolutionary origins of INT and the taxonomic group Longifoliae in the arid southwest USA and Mexico.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3