Assessment of Microalgae Oil as a Carbon-Neutral Transport Fuel: Engine Performance, Energy Balance Changes, and Exhaust Gas Emissions

Author:

Felneris Mantas,Raslavičius LaurencasORCID,Pukalskas Saugirdas,Rimkus AlfredasORCID

Abstract

Notwithstanding the substantial progress acheved since 2010 in the attempts to realize the potential of microalgae biofuels in the transportation sector, the prospects for commercial production of CO2-neutral biofuels are more challenging today than they were in 2010. Pure P. moriformis microalgae oil was subjected to unmodified engine performance testing as a less investigated type of fuel. Conventional diesel was used as a reference fuel to compare and to contrast the energy balances of an engine as well as to juxtapose performance and emission indicators for both unary fuels. According to the methodology applied, the variation of BSFC rates, BTE, smoke opacity, NOx, HC, CO2, O2, and exhaust gas temperature on three different loads were established during compression ignition (CI) engine operation at EGR Off, 25% EGR, 18% EGR and 9% EGR modes, respectively. Simulation model (AVL Boost/BURN) was employed to assess the in-cylinder process parameters (pressure, pressure rise, temperature, temperature rise, ROHR, and MFB). Furthermore, the first law energy balances for an engine running on each of the test fuels were built up to provide useful insights about the peculiarities of energy conversion. Not depending on EGR mode applied, the CI engine running on microalgae oil was responsible for slightly higher BTE values, drastically reduced smoke opacity, higher CO2 values, and smaller O2 concentration, marginally increased NOx levels and lower total energy losses (in %) if compared to the performance with diesel fuel.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3