Affiliation:
1. Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny, Anitúa S/N, Durango 34000, Mexico
2. Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, Mexico
3. Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats in modern times. It was estimated that in 2019, 1.27 million deaths occurred around the globe due to AMR. Methicillin-resistant Staphylococcus aureus (MRSA) strains, a pathogen considered of high priority by the World Health Organization, have proven to be resistant to most of the actual antimicrobial treatments. Therefore, new treatments are required to be able to manage this increasing threat. Under this perspective, an important metabolic pathway for MRSA survival, and absent in mammals, is the shikimate pathway, which is involved in the biosynthesis of chorismate, an intermediate for the synthesis of aromatic amino acids, folates, and ubiquinone. Therefore, the enzymes of this route have been considered good targets to design novel antibiotics. The fifth step of the route is performed by shikimate kinase (SK). In this study, an in-house chemical library of 170 benzimidazole derivatives was screened against MRSA shikimate kinase (SaSK). This effort led to the identification of the first SaSK inhibitors, and the two inhibitors with the greatest inhibition activity (C1 and C2) were characterized. Kinetic studies showed that both compounds were competitive inhibitors with respect to ATP and non-competitive for shikimate. Structural analysis through molecular docking and molecular dynamics simulations indicated that both inhibitors interacted with ARG113, an important residue involved in ATP binding, and formed stable complexes during the simulation period. Biological activity evaluation showed that both compounds were able to inhibit the growth of a MRSA strain. Mitochondrial assays showed that both compounds modify the activity of electron transport chain complexes. Finally, ADMETox predictions suggested that, in general, C1 and C2 can be considered as potential drug candidates. Therefore, the benzimidazole derivatives reported here are the first SaSK inhibitors, representing a promising scaffold and a guide to design new drugs against MRSA.
Funder
Consejo Nacional de Humanidades Ciencias y Tecnologías
Reference79 articles.
1. O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, HM Government and Wellcome Trust. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.
2. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence;Kneis;Sci. Adv.,2019
3. Antimicrobial resistance: A global multifaceted phenomenon;Prestinaci;Pathog. Glob. Health,2015
4. Antimicrobial Resistance Collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399, 629–655.
5. World Health Organization (2024, January 20). A One Health Priority Research Agenda for Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789240075924.