Adaptive Cubature Kalman Filter for Inertial/Geomagnetic Integrated Navigation System Based on Long Short-Term Memory Network

Author:

Liu Tianhao1,Zhao Tianshang2,Zhao Huijun2ORCID,Wang Chenguang23

Affiliation:

1. State Key Laboratory of Satellite Navigation System and Equipment Technology, The 54th Research Institute of CETC, Shijiazhuang 050081, China

2. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China

3. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China

Abstract

Inertial navigation systems experience error accumulation over time, leading to the use of integrated navigation as a classical solution to mitigate inertial drift. This provides a novel approach to navigation and positioning by using the combined advantages of inertial and geomagnetic navigation systems. However, inertial/geomagnetic navigation is affected by significant magnetic interference in practical scenarios, resulting in reduced navigation accuracy. This research introduces a new neural network-assisted integrated inertial–geomagnetic navigation method (IM-NN), and utilizes the adaptive cubature Kalman filter to integrate attitude information from geomagnetism and inertial sensors. A model was created utilizing a Long Short-Term Memory Network (LSTM) to represent the relationship between specific force, angular velocity, and integrated navigation attitude information. The dynamics were estimated based on current and previous Inertial Measurement Unit (IMU) data using IM-NN. This study demonstrated that the method effectively corrected inertial accumulation errors and mitigated geomagnetic disruption, resulting in a more accurate and dependable navigation solution in environments with geomagnetic rejection compared to conventional single inertial navigation methods.

Funder

Innovative Research Group Project of National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3