Abstract
In the high-speed rail industry, the overhead contact line erected along the railroad is used to supply the electricity to the high-speed train via a pantograph on the carbody’s roof. This work attempts to explore the effect of contact line pre-sag on the contact quality between the pantograph and the contact line. A nonlinear finite element approach is implemented to build the overhead contact line system with accurate description of the pre-sag of the contact line. Through a nonlinear solution, the effect of contact line pre-sag on the contact force is analysed with different train speeds and tension classes. The analysis result indicates the feasibility of tuning the pre-sag to improve the interaction performance at a given speed and tension class. In the low-speed range, the change of pre-sag does not have a significant effect on the interaction performance. However, when the speed increases up to a certain value, the effect of pre-sag on the contact force is nonnegligible. The increase in tension can reduce the sensitivity of the interaction performance to the pre-sag. An optimisation procedure is implemented to obtain the optimal amount of pre-sag for different train speeds and tension classes. The results indicate a necessity to include a certain amount of contact line pre-sag to maintain an excellent interaction performance at high speed.
Funder
State Key Laboratory of Traction Power
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献