Numerical analysis of pantograph–catenary coupling vibration for high-speed railways

Author:

Pan Like1ORCID,Peng Peihuo2,Chen Liming1,He Fan2ORCID

Affiliation:

1. Standards & Metrology Research Institute, China Academy of Railway Sciences Corporation Limited 1 , Beijing 100015, China

2. School of Science, Beijing University of Civil Engineering and Architecture 2 , Beijing 100044, China

Abstract

There is a pronounced coupling vibration between the catenary and pantograph during operation for high-speed railways. In this paper, a pantograph–catenary coupling vibration model is constructed to investigate the vibration characteristics under various working conditions. Two different types of catenaries (simple and elastic chain types) are simulated and compared using the finite element method. The pantograph is simplified into a mass–spring–damping combination member, the contact and messenger wires are set to linear beam cells, and the dropper and stitch wire are set to truss cells. The results suggest that the vibration characteristics of the two types of catenaries and pantograph exhibit different trends. The maximum stresses of the messenger wire, dropper, and contact wire do not follow a monotonically increasing trend with the train speed. The maximum stress of the messenger wire under the simple chain type of catenary is higher when the initial contact force increases from 80 to 120 N. However, the maximum stress under the elastic chain type of catenary is higher when the initial contact force is 60 or 140 N. Except for the initial contact force of 140 N, the maximum stresses of the dropper and contact wire under the simple chain type of catenary are lower than those under the elastic chain type. This work provides a valuable reference for optimizing the design of pantograph–catenary systems.

Funder

Research Project of China State Railway Group Co., Ltd.

Research Project of China Academy of Railway Sciences Co., Ltd.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3