Abstract
As micro grids are gradually being deployed in many areas, communication technology is becoming important for collecting data and controlling devices in micro grids. In a micro grid, various devices are distributed and perform their respective functions. These devices exchange information with each other and transmit information to the micro grid management system. This micro grid environment is similar to the IoT environment in which information is exchanged in the presence of a large number of devices. Recent studies have tried to apply various IoT protocols as a communication protocol in the micro grid. However, the data model used in current research is limited in proprietary data mapping. Recently, IEC TC 57 published another IEC 61850 series which maps the IEC 61850 services to XMPP (eXtensible Messaging Presence Protocol), which was the first IoT protocol mapping of IEC 61850. Few research has shown that the mapping of the IEC 61850 data model to the IoT protocol and communication boundary is limited in a lab environment. We developed a micro grid test-bed with an IEC 61850 data and service model, and mapped to two IoT protocols, that is, XMPP and the MQTT (Message Queuing Telemetry Transport). By combining IoT protocol with the IEC 61850 data and service model, the proposed micro grid architecture can provide interoperability with any DMS or other power utility system. Performance analysis was conducted on the test-bed by measuring various metrics, such as the response time, packet size, and packet loss, over a public network.
Funder
National Research Foundation of Korea
Korea Electric Power Corporation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献