Towards a Software-Defined Industrial IoT-Edge Network for Next-Generation Offshore Wind Farms: State of the Art, Resilience, and Self-X Network and Service Management

Author:

Mwangi Agrippina1ORCID,Sahay Rishikesh2ORCID,Fumagalli Elena1ORCID,Gryning Mikkel3ORCID,Gibescu Madeleine1ORCID

Affiliation:

1. Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, The Netherlands

2. College of Engineering, Technology and Management (ETM), Oregon Institute of Technology, Klamath Falls, OR 97601, USA

3. Ørsted Wind Power, Skærbæk, 7000 Fredericia, Denmark

Abstract

Offshore wind farms are growing in complexity and size, expanding deeper into maritime environments to capture stronger and steadier wind energy. Like other domains in the energy sector, the wind energy domain is continuing to digitalize its systems by embracing Industry 4.0 technologies such as the Industrial Internet of Things (IIoT), virtualization, and edge computing to monitor and manage its critical infrastructure remotely. Adopting these technologies creates dynamic, scalable, and cost-effective data-acquisition systems. At the heart of these data-acquisition systems is a communication network that facilitates data transfer between communicating nodes. Given the challenges of configuring, managing, and troubleshooting large-scale communication networks, this review paper explores the adoption of the state-of-the-art software-defined networking (SDN) and network function virtualization (NFV) technologies in the design of next-generation offshore wind farm IIoT–Edge communication networks. While SDN and NFV technologies present a promising solution to address the challenges of these large-scale communication networks, this paper discusses the SDN/NFV-related performance, security, reliability, and scalability concerns, highlighting current mitigation strategies. Building on these mitigation strategies, the concept of resilience (that is, the ability to recover from component failures, attacks, and service interruptions) is given special attention. The paper highlights the self-X (self-configuring, self-healing, and self-optimizing) approaches that build resilience in the software-defined IIoT–Edge communication network architectures. These resilience approaches enable the network to autonomously adjust its configuration, self-repair during stochastic failures, and optimize performance in response to changing conditions. The paper concludes that resilient software-defined IIoT–Edge communication networks will play a big role in guaranteeing seamless next-generation offshore wind farm operations by facilitating critical, latency-sensitive data transfers.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3