Abstract
There are a lot of redundant data in wireless sensor networks (WSNs). If these redundant data are processed and transmitted, the node energy consumption will be too fast and will affect the overall lifetime of the network. Data fusion technology compresses the sampled data to eliminate redundancy, which can effectively reduce the amount of data sent by the node and prolong the lifetime of the network. Due to the dynamic nature of WSNs, traditional data fusion techniques still have many problems. Compressed sensing (CS) theory has introduced new ideas to solve these problems for WSNs. Therefore, in this study we analyze the data fusion scheme and propose an algorithm that combines improved clustered (ICL) algorithm low energy adaptive clustering hierarchy (LEACH) and CS (ICL-LEACH-CS). First, we consider the factors of residual energy, distance, and compression ratio and use the improved clustered LEACH algorithm (ICL-LEACH) to elect the cluster head (CH) nodes. Second, the CH uses a Gaussian random observation matrix to perform linear compressed projection (LCP) on the cluster common (CM) node signal and compresses the N-dimensional signal into M-dimensional information. Then, the CH node compresses the data by using a CS algorithm to obtain a measured value and sends the measured value to the sink node. Finally, the sink node reconstructs the signal using a convex optimization method and uses a least squares algorithm to fuse the signal. The signal reconstruction optimization problem is modeled as an equivalent l1-norm problem. The simulation results show that, compared with other data fusion algorithms, the ICL-LEACH-CS algorithm effectively reduces the node’s transmission while balancing the load between the nodes.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献