Research on Data Fusion Scheme for Wireless Sensor Networks with Combined Improved LEACH and Compressed Sensing

Author:

Song ,Liu ,He ,Jiang

Abstract

There are a lot of redundant data in wireless sensor networks (WSNs). If these redundant data are processed and transmitted, the node energy consumption will be too fast and will affect the overall lifetime of the network. Data fusion technology compresses the sampled data to eliminate redundancy, which can effectively reduce the amount of data sent by the node and prolong the lifetime of the network. Due to the dynamic nature of WSNs, traditional data fusion techniques still have many problems. Compressed sensing (CS) theory has introduced new ideas to solve these problems for WSNs. Therefore, in this study we analyze the data fusion scheme and propose an algorithm that combines improved clustered (ICL) algorithm low energy adaptive clustering hierarchy (LEACH) and CS (ICL-LEACH-CS). First, we consider the factors of residual energy, distance, and compression ratio and use the improved clustered LEACH algorithm (ICL-LEACH) to elect the cluster head (CH) nodes. Second, the CH uses a Gaussian random observation matrix to perform linear compressed projection (LCP) on the cluster common (CM) node signal and compresses the N-dimensional signal into M-dimensional information. Then, the CH node compresses the data by using a CS algorithm to obtain a measured value and sends the measured value to the sink node. Finally, the sink node reconstructs the signal using a convex optimization method and uses a least squares algorithm to fuse the signal. The signal reconstruction optimization problem is modeled as an equivalent l1-norm problem. The simulation results show that, compared with other data fusion algorithms, the ICL-LEACH-CS algorithm effectively reduces the node’s transmission while balancing the load between the nodes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3