An efficient dual layer data aggregation scheme in clustered wireless sensor networks

Author:

Yang Fenting1,Xu Zhen1,Yang Lei1

Affiliation:

1. Wuhan Polytechnic University

Abstract

Abstract In wireless sensor network monitoring system, redundant data from sluggish environmental changes and overlapping sensing ranges can increase the volume of data sent by nodes, degrade the efficiency of information collection, and lead to the death of sensor nodes. In order to reduce energy consumption of sensor nodes and prolong the life of wireless sensor networks, this paper proposed a dual layer intra-cluster data fusion scheme based on ring buffer (DLIDF). To reduce redundant data and temporary anomalous data while guaranteeing the temporal coherence of data, the source nodes employ a binarized similarity function and sliding quartile detection based on ring buffer. Based on the improved support degree function of weighted Pearson distance, the cluster head node performs a weighted fusion on the data received from the source nodes. Experiment results reveal that the scheme proposed in this paper has clear advantages in three aspects: the number of remaining nodes, the residual energy, and the number of packets transmitted.

Publisher

Research Square Platform LLC

Reference38 articles.

1. Wan R, Xiong N, Hu Q et al (2019) Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks. J Wireless Com Network 2019:59

2. Yang C-Y, Lin C-Y, Galsanbadam S, Samani H (2018) Multivariable support vector regression with multi-sensor network data fusion. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Miyazaki, Japan, pp 4029–4034

3. Dananjayan S, Zhuang J, Tang Y et al (2022) Wireless sensor deployment scheme for cost-effective smart farming using the ABC-TEEM algorithm. Evolving Systems

4. Entropy-driven data aggregation method for energy-efficient wireless sensor networks;Zhang J;Inform Fusion,2020

5. A data fusion method in wireless sensor networks;Izadi D;Sensors,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3