PHD Filter for Object Tracking in Road Traffic Applications Considering Varying Detectability

Author:

Törő OlivérORCID,Bécsi TamásORCID,Gáspár PéterORCID

Abstract

This paper considers the object detection and tracking problem in a road traffic situation from a traffic participant’s perspective. The information source is an automotive radar which is attached to the ego vehicle. The scenario characteristics are varying object visibility due to occlusion and multiple detections of a vehicle during a scanning interval. The goal is to maintain and report the state of undetected though possibly present objects. The proposed algorithm is based on the multi-object Probability Hypothesis Density filter. Because the PHD filter has no memory, the estimate of the number of objects present can change abruptly due to erroneous detections. To reduce this effect, we model the occlusion of the object to calculate the state-dependent detection probability. Thus, the filter can maintain unnoticed but probably valid hypotheses for a more extended period. We use the sequential Monte Carlo method with clustering for implementing the filter. We distinguish between detected, undetected, and hidden particles within our framework, whose purpose is to track hidden but likely present objects. The performance of the algorithm is demonstrated using highway radar measurements.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Magyarország Kormánya

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3