Advancing ADAS Perception: A Sensor-Parameterized Implementation of the GM-PHD Filter

Author:

Bader Christian12ORCID,Schwieger Volker1ORCID

Affiliation:

1. Institute of Engineering Geodesy, University of Stuttgart, Geschwister-Scholl-Str. 24D, 70174 Stuttgart, Germany

2. Daimler Truck AG, Fasanenweg 10, 70771 Leinfelden-Echterdingen, Germany

Abstract

Modern vehicles equipped with Advanced Driver Assistance Systems (ADAS) rely heavily on sensor fusion to achieve a comprehensive understanding of their surrounding environment. Traditionally, the Kalman Filter (KF) has been a popular choice for this purpose, necessitating complex data association and track management to ensure accurate results. To address errors introduced by these processes, the application of the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter is a good choice. This alternative filter implicitly handles the association and appearance/disappearance of tracks. The approach presented here allows for the replacement of KF frameworks in many applications while achieving runtimes below 1 ms on the test system. The key innovations lie in the utilization of sensor-based parameter models to implicitly handle varying Fields of View (FoV) and sensing capabilities. These models represent sensor-specific properties such as detection probability and clutter density across the state space. Additionally, we introduce a method for propagating additional track properties such as classification with the GM-PHD filter, further contributing to its versatility and applicability. The proposed GM-PHD filter approach surpasses a KF approach on the KITTI dataset and another custom dataset. The mean OSPA(2) error could be reduced from 1.56 (KF approach) to 1.40 (GM-PHD approach), showcasing its potential in ADAS perception.

Funder

Open Access fund of Universität Stuttgart

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3