Affiliation:
1. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
Abstract
Soybean oil produces harmful substances after long durations of frying. A rapid and nondestructive identification approach for soybean oil was proposed based on photoacoustic spectroscopy and stacking integrated learning. Firstly, a self-designed photoacoustic spectrometer was built for spectral data collection of soybean oil with various frying times. At the same time, the actual free fatty acid content and acid value in soybean oil were measured by the traditional titration experiment, which were the basis for soybean oil quality detection. Next, to eliminate the influence of noise, the spectrum from 1150 cm−1 to 3450 cm−1 was selected to remove noise by ensemble empirical mode decomposition. Then three dimensionality reduction methods of principal component analysis, successive projection algorithm, and competitive adaptive reweighting algorithm were used to reduce the dimension of spectral information to extract the characteristic wavelength. Finally, an integrated model with three weak classifications was used for soybean oil detection by stacking integrated learning. The results showed that three obvious absorption peaks existed at 1747 cm−1, 2858 cm−1, and 2927 cm−1 for soluble sugars and unsaturated oils, and the model based on stacking integrated learning could improve the classification accuracy from 0.9499 to 0.9846. The results prove that photoacoustic spectroscopy has a good detection ability for edible oil quality detection.
Funder
the International Cooperation Capacity Enhancement Program
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry