A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks

Author:

Cormerais Romain,Duclos Aroune,Wasselynck Guillaume,Berthiau GérardORCID,Longo Roberto

Abstract

In the aeronautics sector, aircraft parts are inspected during manufacture, assembly and service, to detect defects eventually present. Defects can be of different types, sizes and orientations, appearing in materials presenting a complex structure. Among the different inspection techniques, Non Destructive Testing (NDT) presents several advantages as they are noninvasive and cost effective. Within the NDT methods, Ultrasonic (US) waves are widely used to detect and characterize defects. However, due the so-called blind zone, they cannot be easily employed for defects close to the surface being inspected. On the other hand, another NDT technique such Eddy Current (EC) can be used only for detecting flaws close to the surface, due to the presence of the EC skin effect. The work presented in this article aims to combine the use of these two NDT methods, exploiting their complementary advantages. To reach this goal, a data fusion method is developed, by using Machine Learning techniques such as Artificial Neural Networks (ANNs). A simulated training database involving simulations of US and EC signals propagating in an Aluminum block in the presence of Side Drill Holes (SDHs) has been implemented, to train the ANNs. Measurements have been then performed on an Aluminum block, presenting tree different SDHs at specific depths. The trained ANNs were used to characterize the different real SDHs, providing an experimental validation. Eventually, particular attention has been addressed to the estimation errors corresponding to each flaw. Experimental results will show that depths and radii estimations error were confined on average within a range of 4%, recording a peak of 11% for the second SDHs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Handbook of Non Destructive Evaluation;Hellier,2001

2. Training Guidelines in Non-Destructive Testing Techniques: Leak Testing at Level 2,2012

3. Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization

4. Ultrasonic Testing of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3