Author:
Badalyan V. G.,Vopilkin A. Kh.
Abstract
A review of the current state and experience of the practical application of artificial neural networks in ultrasonic non-destructive testing is presented. Separately, the features of the use of neural networks for the classification of defects according to data obtained by echo-pulse methods and the TOFD are considered. Information is given on the efficiency of defect classification using neural networks for various ultrasonic testing tasks.
Publisher
Izdatel'skii dom Spektr, LLC
Subject
General Medicine,General Chemistry
Reference41 articles.
1. Klyuev V. V. (Ed.) (1986). Devices for non-destructive testing of materials and products: reference book: in 2 books. Book 1. 2nd ed. Moscow: Mashinostroenie. [in Russian language]
2. Barskiy A. B. (2004). Neural networks: recognition, control, decision making. Moscow: Finansy i statistika. [in Russian language]
3. Nazarenko S. Yu., Udod V. A. (2019). Application of artificial neural networks in radiation non-destructive testing. Defektoskopiya, (6), pp. 53 – 64. [in Russian language]
4. Lunin V. P., Zhdanov A. G., Lazutkin D. Yu. (2007). Neural network defect classifier for multifrequency eddy current testing of heat exchange tubes. Defektoskopiya, (3), pp. 37 – 45. [in Russian language]
5. Kuz'min E. V., Gorbunov O. E., Plotnikov P. O. et al. (2018). Application of neural networks for recognition of structural elements of rails on magnetic and eddy current defectograms. Modelirovanie i analiz informatsionnyh sistem, Vol. 25, (6), pp. 667 – 679. [in Russian language]
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献