A Cascaded Model Based on EfficientDet and YOLACT++ for Instance Segmentation of Cow Collar ID Tag in an Image

Author:

Zhao Kaixuan,Zhang Ruihong,Ji Jiangtao

Abstract

In recent years, many imaging systems have been developed to monitor the physiological and behavioral status of dairy cows. However, most of these systems do not have the ability to identify individual cows because the systems need to cooperate with radio frequency identification (RFID) to collect information about individual animals. The distance at which RFID can identify a target is limited, and matching the identified targets in a scenario of multitarget images is difficult. To solve the above problems, we constructed a cascaded method based on cascaded deep learning models, to detect and segment a cow collar ID tag in an image. First, EfficientDet-D4 was used to detect the ID tag area of the image, and then, YOLACT++ was used to segment the area of the tag to realize the accurate segmentation of the ID tag when the collar area accounts for a small proportion of the image. In total, 938 and 406 images of cows with collar ID tags, which were collected at Coldstream Research Dairy Farm, University of Kentucky, USA, in August 2016, were used to train and test the two models, respectively. The results showed that the average precision of the EfficientDet-D4 model reached 96.5% when the intersection over union (IoU) was set to 0.5, and the average precision of the YOLACT++ model reached 100% when the IoU was set to 0.75. The overall accuracy of the cascaded model was 96.5%, and the processing time of a single frame image was 1.92 s. The performance of the cascaded model proposed in this paper is better than that of the common instance segmentation models, and it is robust to changes in brightness, deformation, and interference around the tag.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the Republic of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase

2. Respiratory behavior detection of cow based on Lucas-Kanade sparse optical flow algorithm;Song;Trans. Chin. Soc. Agric. Eng.,2019

3. Automatic recognition method of dairy cow estrus behavior based on machine vision;Wang;Trans. Chin. Soc. Agric. Mach.,2020

4. Automatic estimation of dairy cattle body condition score from depth image using ensemble model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3