Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning

Author:

Shin Woo-Gyun,Shin Ju-Young,Hwang Hye-Mi,Park Chi-Hong,Ko Suk-Whan

Abstract

The building-integrated photovoltaic (BIPV) system is provoking mention as a technology for generating the energy consumed in cities with renewable sources. As the number of BIPV systems increases, performance diagnosis through power-generation predictions becomes more essential. In the case of a colored BIPV module that has been installed on a wall, it is more difficult to predict the amount of power generation because the shading loss varies based on the entrance altitude of the irradiance. Recently, artificial intelligence technology that is able to predict power by learning the output data of the system has begun being used. In this paper, the power values of colored BIPV systems that have been installed on walls are predicted, and the system output values are compared. The current-voltage (I–V) curve data are measured to predict the power required changing the intensity of the irradiance, and the linear regression model is derived for the changes in the voltage and current at a maximum power operating point and during irradiance changes. To improve the power prediction accuracy by considering the shading loss of colored BIPVs, a new model is proposed via neural network machine learning (ML). In addition, the accuracy of the proposed prediction models is evaluated by comparing the metrics such as RMSE, MAE, and R2. As a result of testing the linear regression model and the proposed ML model, the R2 values for the voltage and current values of the proposed ML model were 5% higher for voltage and 2% higher for current. From this result, the proposed ML model of the RMSE about real power improved by more than 50% (0.0754 kW) compared to the simulation model (0.1581 KW). The proposed model demonstrates high-accuracy power estimations and is expected to help diagnose the performance of BIPV systems with colored modules.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3