Spray Behavior, Combustion, and Emission Characteristics of Jet Propellant-5 and Biodiesel Fuels with Multiple Split Injection Strategies

Author:

Baek Hyun Min,Lee Hyung MinORCID

Abstract

This study focuses on an analysis of the spray behavior, combustion, and emission characteristics of jet propellant-5 (JP-5) and biodiesel fuels with single-injection timing and multiple split injection strategies in a common rail direct injection (CRDI) single-cylinder diesel engine system. The analysis includes visualization of the spray and combustion. Multiple split injection strategies (e.g., double, triple, quadruple, and quintuple) were considered by equally distributing the fuel injection amount within the single-injection. Injection of biodiesel has a delayed start (0.2 ms) as well as shorter spray tip penetration compared with JP-5. As the fuel injection timing was approached to the top dead center (TDC), the engine performance and combustion efficiency improved. Retarding the injection timing contributed to an increase in carbon dioxide (CO2) (JP-5: max. 2.6% up, BD100: max. 1.5% up) and a decrease in carbon monoxide (CO) (JP-5: max. 93% down, BD100: max. 91% down) and nitrogen oxides (NOx) (JP-5: max. 83% down, BD100: max. 82% down). In comparison with JP-5, biodiesel showed disadvantages from the point of its combustion and emission characteristics for all injection timings. The quadruple-injection strategy, in which fuel injection was performed four times, showed excellent combustion, engine performance, and combustion efficiency. The CO2 emissions were highest with the quadruple-injection strategy (JP-5: 6.6%, BD100: 5.8%). The CO emissions of biodiesel decreased as the pulses of split injection extended, and a significant reduction of 83.8% was observed. NOx increased as the number of split injections increased (JP-5: max. 37% up, BD100: max. 52% up). JP-5 was a longer ignition delay than that of biodiesel from combustion flame visualization results. The final combustion in the multiple-injection strategy showed a typical diffusion combustion pattern.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3