Distribution Characteristics of High Wetness Loss Area in the Last Two Stages of Steam Turbine under Varying Conditions

Author:

Fan Shuangshuang,Wang Ying,Yao Kun,Shi Jiakui,Han Jun,Wan Jie

Abstract

Wetness loss of a steam turbine seriously affects the security of the unit when operating in deep peak regulation. To obtain the distribution characteristics of the high wetness loss area under different working conditions, especially low-load conditions, the last two stages of the low-pressure cylinder (LPC) of a 600 MW steam turbine were simulated using the non-equilibrium condensation model proposed in this study. The nucleation rate distribution, supercooling degree, and steam velocity droplet were analyzed. Consequently, the diameter distribution of coarse water droplets under 100%, 50%, 40%, 30%, and 20% THA conditions and the distribution of the thermodynamic loss and water droplet resistance loss were obtained. Thermodynamic loss mainly occurred at the front end of second-stage stator blades and trailing end of the last-stage stator blades. The water droplet resistance loss mainly occurred at 40% of the blade height and at the tip of the last-stage stator blades. Moreover, with a reduction in the unit load, the thermodynamic loss continued to decrease, but the water droplet resistance loss continued to increase.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3