Optimization of inlet conditions of hot steam injection into the non-equilibrium condensing steam

Author:

Ghodrati Mohammad1ORCID,Lakzian Esmail12ORCID,Kim Heuy Dong2ORCID

Affiliation:

1. Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University 1 , Sabzevar 9617976487, Iran

2. Department of Mechanical Engineering, Andong National University 2 , Andong, Gyeongsangbuk-do 36729, South Korea

Abstract

Injecting hot steam into the cascade flow is one of the procedures for resisting losses and damages caused by condensation. In the current study, utilizing a 3D (three-dimensional) geometry for steam turbine blades, the hot steam has been injected into the steam cascade via the embedded channel. In the power plant industry, the hot steam injection process is done in two ways: constant pressure with a reservoir or constant mass flow rate utilizing a control valve. Therefore, considering these two methods and the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) optimization method, the best temperature for injecting hot steam into non-equilibrium steam in a constant steam turbine blade has been gained. At the optimal temperature of 540 K at the constant pressure mode, Er (erosion rate ratio) and Lr (condensation loss ratio) were obtained as 66.6% and 30.7%, respectively, and Kr (kinetic energy ratio) showed a 0.6% growth in the hot steam injection mode, in comparison with the original mode. In addition, the economic cost of hot steam injection was calculated as 0.457 ($/hour). By the TOPSIS optimization method, the optimal temperature of hot steam injection, utilizing the constant mass flow rate method, has been obtained as 460 K, and the Er, Lr, and Kr values were 31.2%, 66.1%, and 88.48%, respectively at the optimal temperature. Moreover, the economic cost was 0.43 ($/hour). It is easier to control the steam injection by the constant mass flow rate method utilizing a control valve; therefore, the 460 K temperature and constant mass flow rate method are introduced as the optimal method.

Funder

Brain Pool program funded by ministry of Science and ICT through the National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3