Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review

Author:

Eneren PinarORCID,Aksoy Yunus TansuORCID,Vetrano Maria RosariaORCID

Abstract

For more than 20 years, the use of nanofluids to enhance heat transfer in microchannel heat sinks (MCHSs) has been the subject of a large number of scientific articles. Despite the great potentialities reported in several works, the presence of controversial results and the lack of understanding of heat transfer enhancement mechanisms prevent further advancement in the use of nanofluids as coolants. This article reviews the scientific literature focused on several aspects of nanofluids that have a role in the heat transfer enhancement within the MCHSs: nanofluid stability, thermal conductivity, and particle clustering, as well as the particle–surface interactions, i.e., abrasion, erosion, and corrosion. We also include the most relevant works on the convective heat transfer and MCHSs operated with nanofluids in our review.

Funder

KU Leuven

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3