Author:
Zhou Minglei,Jiang Long,Wang Chenchen
Abstract
Real-time multiparameter identification has been widely investigated in relation to high-performance control and fault diagnosis of salient-pole permanent magnet synchronous motors (PMSMs). However, it is rank-deficient for simultaneously estimating flux, resistance, and dq-axis inductances based on one steady state under maximum torque per ampere (MTPA) control, which will cause the ill-convergence problem in the results. This paper proposes a new method to solve the rank deficiency problem in the multiparameter identification of salient-pole PMSMs in systems where the motor working conditions do not change frequently. For this type of system, a second steady state is constructed in order to meet the full-rank conditions for multiparameter identification and minimize the torque ripple. Furthermore, in order to reduce the influence of inductance variations, a better shift direction from the first steady state to the second is ensured based on the analysis of the theoretical error. Simulation and experimental results show that the proposed method demonstrates good identification performance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献