Abstract
The accurate identification of permanent magnet synchronous motor (PMSM) parameters is the basis for high-performance drive control. The traditional PMSM multiparameter identification method experiences problems with the uncertainty of the identification results and low identification accuracy due to the under-ranking of the mathematical model of motor control. A multiparameter identification of PMSM based on a model reference adaptive system and simulated annealing particle swarm optimization (MRAS-SAPSO) is proposed here. The algorithm first identifies the electrical parameters of the PMSM (stator winding resistance R, cross-axis inductance L, and magnetic linkage ψf) by means of the model reference adaptive system method. Second, the result is used as the initial population in particle swarm optimization identification to further optimize and identify the electrical and mechanical parameters (moment of inertia J and damping coefficient B) in the motor control system. Additionally, in order to avoid problems such as premature convergence of the particle swarm in the optimization search process, the results of the adaptive simulated annealing algorithm to optimize multiparameter identification are introduced. The simulation experiment results show that the five identification parameters obtained by the MRAS-SAPSO algorithm are highly accurate and stable, and the errors between them and the real values are below 2%. This also verifies the effectiveness and reliability of this identification method.
Funder
Collaborative Innovation Project of Colleges and Universities in Anhui Province
Natural Science Foundation of Anhui Province
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献