Quantifying the Intra-Habitat Variation of Seagrass Beds with Unoccupied Aerial Vehicles (UAVs)

Author:

Price David M.ORCID,Felgate Stacey L.ORCID,Huvenne Veerle A. I.,Strong JamesORCID,Carpenter StephenORCID,Barry ChrisORCID,Lichtschlag Anna,Sanders Richard,Carrias Abel,Young Arlene,Andrade Valdemar,Cobb Eliceo,Le Bas TimORCID,Brittain HannahORCID,Evans Claire

Abstract

Accurate knowledge of the spatial extent of seagrass habitats is essential for monitoring and management purposes given their ecological and economic significance. Extent data are typically presented in binary (presence/absence) or arbitrary, semi-quantitative density bands derived from low-resolution satellite imagery, which cannot resolve fine-scale features and intra-habitat variability. Recent advances in consumer-grade unoccupied aerial vehicles (UAVs) have advanced our ability to survey large areas at higher resolution and at lower cost. This has improved the accessibility of mapping technologies to developing coastal nations, where a large proportion of the world’s seagrass habitats are found. Here, we present the application of UAV-gathered imagery to determine seagrass habitat extent and percent of canopy cover. Four contrasting sites were surveyed in the Turneffe Atoll Marine Reserve, Belize, and seagrass canopy cover was ground truthed from in situ quadrats. Orthomosaic images were created for each site from the UAV-gathered imagery. Three modelling techniques were tested to extrapolate the findings from quadrats to spatial information, producing binary (random forest) and canopy cover (random forest regression and beta regression) habitat maps. The most robust model (random forest regression) had an average absolute error of 6.8–11.9% (SE of 8.2–14), building upon previous attempts at mapping seagrass density from satellite imagery, which achieved errors between 15–20% approximately. The resulting maps exhibited great intra-habitat heterogeneity and different levels of patchiness, which were attributed to site energetics and, possibly, species composition. The extra information in the canopy cover maps provides greater detail and information for key management decisions and provides the basis for future spatial studies and monitoring programmes.

Funder

Natural Environmental Research Council

NERC

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3