Transformer for Tree Counting in Aerial Images

Author:

Chen GuangORCID,Shang YiORCID

Abstract

The number of trees and their spatial distribution are key information for forest management. In recent years, deep learning-based approaches have been proposed and shown promising results in lowering the expensive labor cost of a forest inventory. In this paper, we propose a new efficient deep learning model called density transformer or DENT for automatic tree counting from aerial images. The architecture of DENT contains a multi-receptive field convolutional neural network to extract visual feature representation from local patches and their wide context, a transformer encoder to transfer contextual information across correlated positions, a density map generator to generate spatial distribution map of trees, and a fast tree counter to estimate the number of trees in each input image. We compare DENT with a variety of state-of-art methods, including one-stage and two-stage, anchor-based and anchor-free deep neural detectors, and different types of fully convolutional regressors for density estimation. The methods are evaluated on a new large dataset we built and an existing cross-site dataset. DENT achieves top accuracy on both datasets, significantly outperforming most of the other methods. We have released our new dataset, called Yosemite Tree Dataset, containing a 10 km2 rectangular study area with around 100k trees annotated, as a benchmark for public access.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference59 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3