Resveratrol Enhances Temozolomide Efficacy in Glioblastoma Cells through Downregulated MGMT and Negative Regulators-Related STAT3 Inactivation

Author:

Wu Moli12,Song Danyang1,Li Hui1,Ahmad Nisar1,Xu Hong2,Yang Xiaobo1ORCID,Wang Qian2,Cheng Xiaoxin2,Deng Sa1,Shu Xiaohong13ORCID

Affiliation:

1. College of Pharmacy, Dalian Medical University, Dalian 116044, China

2. College of Basic Medical Science, Dalian Medical University, Dalian 116044, China

3. Key Laboratory for Basic and Applied Research on Pharmacodynamic Substances of Traditional Chinese Medicine of Liaoning Province, Dalian Medical University, Dalian 116044, China

Abstract

Chemoresistance blunts the efficacy of temozolomide (TMZ) in the treatment of glioblastoma (GBM). Elevated levels of O6-methylguanine-DNA methyltransferase (MGMT) and activation of signal transducer and of transcription 3 (STAT3) have been reported to correlate with GBM resistance to alkylator chemotherapy. Resveratrol (Res) inhibits tumor growth and improves drug chemosensitivity by targeting STAT3 signaling. Whether the combined therapy of TMZ and Res could enhance chemosensitivity against GBM cells and the underlying molecular mechanism remains to be determined. In this study, Res was found to effectively improve chemosensitivities of different GBM cells to TMZ, which was evaluated by CCK-8, flow cytometry, and cell migration assay. The combined use of Res and TMZ downregulated STAT3 activity and STAT3-regulated gene products, thus inhibited cell proliferation and migration, as well as induced apoptosis, accompanied by increased levels of its negative regulators: PIAS3, SHP1, SHP2, and SOCS3. More importantly, a combination therapy of Res and TMZ reversed TMZ resistance of LN428 cells, which could be related to decreased MGMT and STAT3 levels. Furthermore, the JAK2-specific inhibitor AG490 was used to demonstrate that a reduced MGMT level was mediated by STAT3 inactivation. Taken together, Res inhibited STAT3 signaling through modulation of PIAS3, SHP1, SHP2, and SOCS3, thereby attenuating tumor growth and increasing sensitivity to TMZ. Therefore, Res is an ideal candidate to be used in TMZ combined chemotherapy for GBM.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3