Immunohistochemistry Reveals TRPC Channels in the Human Hearing Organ—A Novel CT-Guided Approach to the Cochlea

Author:

Englisch Colya N.1ORCID,Steinhäuser Jakob1,Wemmert Silke2ORCID,Jung Martin3ORCID,Gawlitza Joshua4,Wenzel Gentiana2,Schick Bernhard2,Tschernig Thomas1ORCID

Affiliation:

1. Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany

2. Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg/Saar, Germany

3. Institute of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg/Saar, Germany

4. Institute of Radiology, Technical University of Munich, 80333 Munich, Germany

Abstract

TRPC channels are critical players in cochlear hair cells and sensory neurons, as demonstrated in animal experiments. However, evidence for TRPC expression in the human cochlea is still lacking. This reflects the logistic and practical difficulties in obtaining human cochleae. The purpose of this study was to detect TRPC6, TRPC5 and TRPC3 in the human cochlea. Temporal bone pairs were excised from ten body donors, and the inner ear was first assessed based on computed tomography scans. Decalcification was then performed using 20% EDTA solutions. Immunohistochemistry with knockout-tested antibodies followed. The organ of Corti, the stria vascularis, the spiral lamina, spiral ganglion neurons and cochlear nerves were specifically stained. This unique report of TRPC channels in the human cochlea supports the hypothesis of the potentially critical role of TRPC channels in human cochlear health and disease which has been suggested in previous rodent experiments.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3