TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons

Author:

Garrison Sheldon R.1,Dietrich Alexander2,Stucky Cheryl L.1

Affiliation:

1. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; and

2. Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU München Nußbaumstr, Munich, Germany

Abstract

The cellular proteins that underlie mechanosensation remain largely enigmatic in mammalian systems. Mechanically sensitive ion channels are thought to distinguish pressure, stretch, and other types of tactile signals in skin. Transient receptor potential canonical 1 (TRPC1) is a candidate mechanically sensitive channel that is expressed in primary afferent sensory neurons. However, its role in the mechanical sensitivity of these neurons is unclear. Here, we investigated TRPC1-dependent responses to both innocuous and noxious mechanical force. Mechanically evoked action potentials in cutaneous myelinated A-fiber and unmyelinated C-fiber neurons were quantified using the ex vivo skin-nerve preparation to record from the saphenous nerve, which terminates in the dorsal hairy skin of the hindpaw. Our data reveal that in TRPC1-deficient mice, mechanically evoked action potentials were decreased by nearly 50% in slowly adapting Aβ-fibers, which largely innervate Merkel cells, and in rapidly adapting Aδ-Down-hair afferent fibers compared with wild-type controls. In contrast, differences were not found in slowly adapting Aδ-mechanoreceptors or unmyelinated C-fibers, which primarily respond to nociceptive stimuli. These results suggest that TRPC1 may be important in the detection of innocuous mechanical force. We concurrently investigated the role of TRPC1 in behavioral responses to mechanical force to the plantar hindpaw skin. For innocuous stimuli, we developed a novel light stroke assay using a “puffed out” cotton swab. Additionally, we used repeated light, presumably innocuous punctate stimuli with a low threshold von Frey filament (0.68 mN). In agreement with our electrophysiological data in light-touch afferents, TRPC1-deficient mice exhibited nearly a 50% decrease in behavioral responses to both the light-stroke and light punctate mechanical assays when compared with wild-type controls. In contrast, TRPC1-deficient mice exhibited normal paw withdrawal response to more intense mechanical stimuli that are typically considered measures of nociceptive behavior.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3