Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress

Author:

Sperdouli Ilektra12ORCID,Ouzounidou Georgia3,Moustakas Michael1ORCID

Affiliation:

1. Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

2. Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece

3. Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece

Abstract

Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (−13%) and MoWDS (−19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (−10%) and MoWDS (−23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3