The Magnitude and Causes of Global Drought Changes in the Twenty-First Century under a Low–Moderate Emissions Scenario

Author:

Zhao Tianbao1,Dai Aiguo2

Affiliation:

1. Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Atmospheric demand for moisture and dry days are expected to increase, leading to drying over land in the twenty-first century. Here, the magnitude and key drivers of this drying are investigated using model simulations under a low–moderate scenario, RCP4.5. The self-calibrated Palmer drought severity index with the Penman–Monteith potential evapotranspiration (PET) (sc_PDSI_pm), top 10-cm soil moisture (SM), and runoff (R) from 14 models are analyzed. The change patterns are found to be comparable while the magnitude differs among these measures of drought. The frequency of the SM-based moderate (severe) agricultural drought could increase by 50%–100% (100%–200%) in a relative sense by the 2090s over most of the Americas, Europe, and southern Africa and parts of East and West Asia and Australia. Runoff-based hydrological drought frequency could also increase by 10%–50% over most land areas despite increases in mean runoff. The probability density functions (PDFs) flatten, enhancing the drought increases induced primarily by decreases in the mean. Precipitation (P) and evapotranspiration (E) changes contribute to the SM change; whereas decreases in sc_PDSI_pm result from ubiquitous PET increases of 10%–20% with contributions from decreased P over subtropical areas. Rising temperatures and vapor deficits explain most of the PET increase, which in turn explains most of the E increases over Asia and northern North America while decreased SM leads to lower E over the rest of the world. Radiation and wind speed changes have only small effects on future PET and drought. Globally, runoff ratio changes little while P, E, and R all increase by about 4%–5% in the twenty-first century.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 236 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3