Author:
Kim In-Tae,Kim Yu-Sin,Nam Hyeonggon,Hwang Taeyon
Abstract
This study aims to evaluate the accuracy and energy savings of a daylight responsive dimming system (DRDS) when considering the influence of indirect illuminance. In the case of the existing DRDS, during the calibration process of each luminaire, the other luminaires were turned off to detect the illuminance of both the luminaire and the incoming daylight. However, the work plane illuminance under the luminaires was affected by the indirect illuminance from the other luminaires. The final work plane illuminance would thus be higher than the target illuminance during real system operation. To improve the accuracy and energy savings of the DRDS, an improved dimming control algorithm was applied to the DRDS when considering the influence of indirect illuminance. The real-time power consumption and accuracy of the target illuminance of the DRDS when considering the influence of indirect illuminance in a full-scale mock-up was measured and analyzed (for 23 days, from 22 June to 18 July 2018). As a result, the average accuracy of the target illuminance was 98.9% (SD 0.5%), and the average saving in lighting energy was 77%.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Indoor automatic dimming system based on particle swarm optimization;2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE);2024-06-18