Feasibility Study and Impact of Daylight on Illumination Control for Energy-Saving Lighting Systems

Author:

Bunjongjit Sulee,Ngaopitakkul Atthapol

Abstract

The main goal of energy conservation should be reducing the consumption of energy resources. Due to energy and environmental concerns in recent years, to reduce energy consumption in a lighting system, which has been one of the prime targets of energy saving, daylighting has been investigated and has become one of the energy-efficiency techniques widely applied in buildings. This paper presents an analysis of T5 fluorescent luminaire lighting control using daylight in a building. The study is conducted in two parts; simulation of a lecture room using the daylighting function of the DIALux program is performed to estimate the effect of daylighting on a task area (workplane). Another part is an experimental setup to evaluate the performance of a lighting control unit that is installed for a T5 fluorescent luminaire with a dimmable electronic ballast. The efficiency of the lighting control in term of illumination on the task area and energy consumption are also evaluated and compared with the standard case. The simulation results show that daylighting increases illuminance on a task area, especially on the window side, so the lighting system can significantly reduce its power consumption compared with a standard case (without lighting control). The experimental result shows that upon installing the lighting control with daylighting, both the average illuminance and the energy consumption in each time period are decreased compared with in the standard case. Lighting control with daylighting tries to set the average illuminance on a task area to less than 500 lux, corresponding to the amount of daylight passing through window shutters. The obtained results are useful for the design of a T5 fluorescent luminaire with lighting control using daylighting in a building lighting system for energy efficiency and reducing energy consumption, including the average illuminance on the task area, according to a relevant standard.

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference81 articles.

1. Energy Statistics of Thailand 2017,2017

2. Energy Efficiency Plan 2015,2015

3. Thailand 20 Year Energy Efficiency Development Plan (EEDP),2015

4. Demand-Side Management through thermal efficiency in South African houses

5. Renewables in the energy transition: Evidence on solar home systems and lighting fuel choice in Kenya

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3