Prediction of Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete Using Novel Deep Learning Methods

Author:

de-Prado-Gil Jesús,Zaid OsamaORCID,Palencia CovadongaORCID,Martínez-García RebecaORCID

Abstract

The composition of self-compacting concrete (SCC) contains 60–70% coarse and fine aggregates, which are replaced by construction waste, such as recycled aggregates (RA). However, the complexity of its structure requires a time-consuming mixed design. Currently, many researchers are studying the prediction of concrete properties using soft computing techniques, which will eventually reduce environmental degradation and other material waste. There have been very limited and contradicting studies regarding prediction using different ANN algorithms. This paper aimed to predict the 28-day splitting tensile strength of SCC with RA using the artificial neural network technique by comparing the following algorithms: Levenberg–Marquardt (LM), Bayesian regularization (BR), and Scaled Conjugate Gradient Backpropagation (SCGB). There have been very limited and contradicting studies regarding prediction by using and comparing different ANN algorithms, so a total of 381 samples were collected from various published journals. The input variables were cement, admixture, water, fine and coarse aggregates, and superplasticizer; the data were randomly divided into three sets—training (60%), validation (10%), and testing (30%)—with 10 neurons in the hidden layer. The models were evaluated by the mean squared error (MSE) and correlation coefficient (R). The results indicated that all three models have optimal accuracy; still, BR gave the best performance (R = 0.91 and MSE = 0.2087) compared with LM and SCG. BR was the best model for predicting TS at 28 days for SCC with RA. The sensitivity analysis indicated that cement (30.07%) was the variable that contributed the most to the prediction of TS at 28 days for SCC with RA, and water (2.39%) contributed the least.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3