Human Motion Tracking Using 3D Image Features with a Long Short-Term Memory Mechanism Model—An Example of Forward Reaching

Author:

Chen Kai-Yu,Chou Li-WeiORCID,Lee Hui-Min,Young Shuenn-Tsong,Lin Cheng-Hung,Zhou Yi-Shu,Tang Shih-Tsang,Lai Ying-Hui

Abstract

Human motion tracking is widely applied to rehabilitation tasks, and inertial measurement unit (IMU) sensors are a well-known approach for recording motion behavior. IMU sensors can provide accurate information regarding three-dimensional (3D) human motion. However, IMU sensors must be attached to the body, which can be inconvenient or uncomfortable for users. To alleviate this issue, a visual-based tracking system from two-dimensional (2D) RGB images has been studied extensively in recent years and proven to have a suitable performance for human motion tracking. However, the 2D image system has its limitations. Specifically, human motion consists of spatial changes, and the 3D motion features predicted from the 2D images have limitations. In this study, we propose a deep learning (DL) human motion tracking technology using 3D image features with a deep bidirectional long short-term memory (DBLSTM) mechanism model. The experimental results show that, compared with the traditional 2D image system, the proposed system provides improved human motion tracking ability with RMSE in acceleration less than 0.5 (m/s2) X, Y, and Z directions. These findings suggest that the proposed model is a viable approach for future human motion tracking applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. World Population Ageing 2020 Highlights,2020

2. Stroke, Cerebrovascular Accidenthttp://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html

3. Human motion tracking for rehabilitation—A survey

4. World Report on Disability 2011,2011

5. Rehabilitationhttps://www.who.int/news-room/fact-sheets/detail/rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3