Complex Cases of Source Code Authorship Identification Using a Hybrid Deep Neural Network

Author:

Kurtukova Anna,Romanov AleksandrORCID,Shelupanov Alexander,Fedotova AnastasiaORCID

Abstract

This paper is a continuation of our previous work on solving source code authorship identification problems. The analysis of heterogeneous source code is a relevant issue for copyright protection in commercial software development. This is related to the specificity of development processes and the usage of collaborative development tools (version control systems). As a result, there are source codes written according to different programming standards by a team of programmers with different skill levels. Another application field is information security—in particular, identifying the author of computer viruses. We apply our technique based on a hybrid of Inception-v1 and Bidirectional Gated Recurrent Units architectures on heterogeneous source codes and consider the most common commercial development complex cases that negatively affect the authorship identification process. The paper is devoted to the possibilities and limitations of the author’s technique in various complex cases. For situations where a programmer was proficient in two programming languages, the average accuracy was 87%; for proficiency in three or more—76%. For the artificially generated source code case, the average accuracy was 81.5%. Finally, the average accuracy for source codes generated from commits was 84%. The comparison with state-of-the-art approaches showed that the proposed method has no full-functionality analogs covering actual practical cases.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3