Source Code Authorship Identification Using Deep Neural Networks

Author:

Kurtukova Anna,Romanov Aleksandr,Shelupanov Alexander

Abstract

Many open-source projects are developed by the community and have a common basis. The more source code is open, the more the project is open to contributors. The possibility of accidental or deliberate use of someone else’s source code as a closed functionality in another project (even a commercial) is not excluded. This situation could create copyright disputes. Adding a plagiarism check to the project lifecycle during software engineering solves this problem. However, not all code samples for comparing can be found in the public domain. In this case, the methods of identifying the source code author can be useful. Therefore, identifying the source code author is an important problem in software engineering, and it is also a research area in symmetry. This article discusses the problem of identifying the source code author and modern methods of solving this problem. Based on the experience of researchers in the field of natural language processing (NLP), the authors propose their technique based on a hybrid neural network and demonstrate its results both for simple cases of determining the authorship of the code and for those complicated by obfuscation and using of coding standards. The results show that the author’s technique successfully solves the essential problems of analogs and can be effective even in cases where there are no obvious signs indicating authorship. The average accuracy obtained for all programming languages was 95% in the simple case and exceeded 80% in the complicated ones.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. Identification Author of Source Code by Machine Learning Methods

2. Automatic text-independent speaker verification using convolutional deep belief network

3. Crimes in the field of high technologies in modern Russia;Nikerov;Bull. East-Sib. Inst. MIA Russ.,2019

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3