The Neuromarketing Concept in Artificial Neural Networks: A Case of Forecasting and Simulation from the Advertising Industry

Author:

Ahmed Rizwan RaheemORCID,Streimikiene DaliaORCID,Channar Zahid Ali,Soomro Hassan AbbasORCID,Streimikis Justas,Kyriakopoulos Grigorios L.ORCID

Abstract

This research aims to examine a neural network (artificial intelligence) as an alternative model to examine the neuromarketing phenomenon. Neuromarketing is comparatively new as a technique for designing marketing strategies, especially advertising campaigns. Marketers have used a variety of different neuromarketing tools, for instance functional magnetic resonance imaging (fMRI), eye tracking, electroencephalography (EEG), steady-state probe topography (SSPT), and other expensive gadgets. Similarly, researchers have been using these devices to carry out their studies. Therefore, neuromarketing has been an expensive project for both companies and researchers. We employed 585 human responses and used the neural network (artificial intelligence) technique to examine the predictive consumer buying behavior of an effective advertisement. For this purpose, we employed two neural network applications (artificial intelligence) to examine consumer buying behavior, first taken from a 1–5 Likert scale. A second application was run to examine the predicted consumer buying behavior in light of the neuromarketing phenomenon. The findings suggest that a neural network (artificial intelligence) is a unique, cost-effective, and powerful alternative to traditional neuromarketing tools. This study has significant theoretical and practical implications for future researchers and brand managers in the service and manufacturing sectors.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3