Improved Artificial Potential Field Algorithm Assisted by Multisource Data for AUV Path Planning

Author:

Xing Tianyu1,Wang Xiaohao1,Ding Kaiyang1,Ni Kai1ORCID,Zhou Qian1ORCID

Affiliation:

1. Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

With the development of ocean exploration technology, the exploration of the ocean has become a hot research field involving the use of autonomous underwater vehicles (AUVs). In complex underwater environments, the fast, safe, and smooth arrival of target points is key for AUVs to conduct underwater exploration missions. Most path-planning algorithms combine deep reinforcement learning (DRL) and path-planning algorithms to achieve obstacle avoidance and path shortening. In this paper, we propose a method to improve the local minimum in the artificial potential field (APF) to make AUVs out of the local minimum by constructing a traction force. The improved artificial potential field (IAPF) method is combined with DRL for path planning while optimizing the reward function in the DRL algorithm and using the generated path to optimize the future path. By comparing our results with the experimental data of various algorithms, we found that the proposed method has positive effects and advantages in path planning. It is an efficient and safe path-planning method with obvious potential in underwater navigation devices.

Funder

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Source-Data-Assisted AUV for Path Cruising: An Energy-Efficient DDPG Approach;Remote Sensing;2023-12-02

2. New advances in path planning and tracking control technology for autonomous underwater vehicles;Fourth International Conference on Computer Science and Communication Technology (ICCSCT 2023);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3