A Deep Neural Network for Accurate and Robust Prediction of the Glass Transition Temperature of Polyhydroxyalkanoate Homo- and Copolymers

Author:

Jiang ZhuoyingORCID,Hu Jiajie,Marrone Babetta L.ORCID,Pilania GhanshyamORCID,Yu Xiong (Bill)ORCID

Abstract

The purpose of this study was to develop a data-driven machine learning model to predict the performance properties of polyhydroxyalkanoates (PHAs), a group of biosourced polyesters featuring excellent performance, to guide future design and synthesis experiments. A deep neural network (DNN) machine learning model was built for predicting the glass transition temperature, Tg, of PHA homo- and copolymers. Molecular fingerprints were used to capture the structural and atomic information of PHA monomers. The other input variables included the molecular weight, the polydispersity index, and the percentage of each monomer in the homo- and copolymers. The results indicate that the DNN model achieves high accuracy in estimation of the glass transition temperature of PHAs. In addition, the symmetry of the DNN model is ensured by incorporating symmetry data in the training process. The DNN model achieved better performance than the support vector machine (SVD), a nonlinear ML model and least absolute shrinkage and selection operator (LASSO), a sparse linear regression model. The relative importance of factors affecting the DNN model prediction were analyzed. Sensitivity of the DNN model, including strategies to deal with missing data, were also investigated. Compared with commonly used machine learning models incorporating quantitative structure–property (QSPR) relationships, it does not require an explicit descriptor selection step but shows a comparable performance. The machine learning model framework can be readily extended to predict other properties.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3