Pultruded GFRP Reinforcing Bars Using Nanomodified Vinyl Ester

Author:

Vemuganti Shreya,Chennareddy Rahulreddy,Riad Amr,Taha MahmoudORCID

Abstract

Glass fiber-reinforced polymer (GFRP) reinforcing bars have relatively low shear strength, which limits their possible use in civil infrastructure applications with high shear demand, such as concrete reinforcing dowels. We suggest that the horizontal shear strength of GFRP bars can be significantly improved by nanomodification of the vinyl ester resin prior to pultrusion. The optimal content of functionalized multiwalled carbon nanotubes (MWCNTs) well dispersed into the vinyl ester resin was determined using viscosity measurements and scanning electron micrographs. Longitudinal tension and short beam shear tests were conducted to determine the horizontal shear strength of the nanomodified GFRP reinforcing bars. While the tensile strength of the GFRP reinforcing bars was improved by 20%, the horizontal shear strength of the bars was improved by 111% compared with the shear strength of neat GFRP bars pultruded using the same settings. Of special interest is the absence of the typical broom failure observed in GFRP when MWCNTs were used. Differential scanning calorimetry measurements and fiber volume fraction confirmed the quality of the new pultruded GFRP bars. Fourier-transform infrared (FTIR) measurements demonstrated the formation of carboxyl stretching in nanomodified GFRP bars, indicating the formation of a new chemical bond. The new pultrusion process using nanomodified vinyl ester enables expanding the use of GFRP reinforcing bars in civil infrastructure applications.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3