Effect of immediate curing at elevated temperatures on the tensile and interfacial properties of carbon fiber-epoxy composites

Author:

Liever Alexandra,Liu Yingtao,Vemuganti ShreyaORCID

Abstract

Abstract Elevated temperature conditions known to improve curing from the onset and during the process of immediate curing are not available in the field, which can hinder the mechanical performance of these strengthening systems. In this study, mechanical testing and material characterization were conducted to identify the effects of subjecting nanomodified epoxy and fiber-reinforced nanomodified epoxy composites to room temperature (RT) (30 °C) and elevated temperature (110 °C) from the onset of curing. Static tensile testing and interfacial adhesion tests were conducted to evaluate the mechanical performance. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed to determine curing characteristics to inform on the immediate curing of nanomodified resins cured under the two temperature conditions. Scanning electron microscopy was performed to identify Carbon nanotube (CNT) dispersion characteristics. Overall, due to the incorporation of CNTs in epoxy, RT curing results in upto 62% increase in strain at failure. By supplying additional energy during immediate curing with elevated temperatures, a 51% increase in strength and 42% increase in Youngs Modulus can be observed in the nanomodified epoxy. In CFRP-epoxy composites, due to the incorporation of CNTs in the epoxy, RT curing results in upto 27% increase in strain at failure. By supplying additional energy during immediate curing with elevated temperatures, upto 133% increase in strain at failure is observed and upto 17% increase in strength is observed. CNTs incorporated in CFRP-epoxy composites demonstrated upto 50% increase in interfacial adhesion whereas supplying additional energy for their immediate curing with elevated temperatures, upto 130% increase in interfacial adhesion was observed. TGA and DSC results supported the mechanical observations and show a need for immediate curing when CNTs are used in epoxy matrices.

Funder

Research Council of the University of Oklahoma Norman Campus

Publisher

IOP Publishing

Reference39 articles.

1. Strengthening of concrete structures using FRP composites;Alkhrdaji;Struct. Mag.,2015

2. Pultruded GFRP reinforcing bars using nanomodified vinyl ester;Vemuganti;Materials,2020

3. Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties;Boroujeni;Composites B,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3