Abstract
Smart hydrogels, owing to their exceptional viscoelastic and deformable capacity in response to environmental stimulation involving temperature and pH, have been successfully applied in oilfields for purposes such as water and/or gas shutoff treatments. However, the CO2 breakthrough problem in low permeability reservoirs has not been well solved. In this work, a rheological method-based Avrami dynamics model and Dickinson dynamics model were employed to investigate the dynamic gelation process of thermo-/pH-dual-sensitive PEG/PAMAM nanogels to further our understanding of the microstructure of their gelation and pertinence plugging application. Plugging experiments were performed by alternating injections of CO2 and hydrogel solution in a slug type on three fractured low permeability cores with a backpressure of 13 MPa. The nanogels presented a secondary growth pattern from three to one dimension from micrometer to nanometer size with a morphological transformation from a sphere to an irregular ellipsoid or disk shape. The phase transition temperature was 50 °C, and the phase transition pH was 10. If both or either were below these values, the hydrogel swelled; otherwise, it shrank. Plugging results show that the plugging efficiency was higher than 99%. The maximum breakthrough pressure was 19.93 MPa, and the corresponding residual pressure remained 17.64 MPa for a 10 mD core, exhibiting great plugging performance and high residual resistance after being broken through by CO2.
Funder
Heilongjiang Postdoctoral Fund
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献