Novel Environmentally Responsive Polyvinyl Polyamine Hydrogels Capable of Phase Transformation with Temperature for Applications in Reservoir Profile Control

Author:

Meng Jianxun123,Mao Guoliang1,Zhu Zhixuan23ORCID,Li Qingsong23,Lin Xuesong23,Wang Lichao23,Li Yiran23,Huang Yue4

Affiliation:

1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China

2. Research Institute of Oil Production Engineering, Daqing Oilfield Limited Company, Daqing 163453, China

3. Heilongjiang Provincial Key Laboratory of Oil and Gas Reservoir Stimulation, Daqing 163453, China

4. No. 2 Production Plant, Daqing Oilfield Limited Company, Daqing 163461, China

Abstract

Hydrogel has been widely used in reservoir regulation for enhancing oil recovery, however, this process can experience negative influences on the properties and effects of the hydrogels. Therefore, developing novel hydrogels with excellent environmental responsiveness would improve the formation adaptability of hydrogels. In this study, novel polyvinyl polyamine hydrogels were synthesized by a ring-opening addition reaction between polyvinyl polyamines and polyethylene glycol glycidyl ether. The results of atomic force microscopy and transmission electron microscopy showed that the polyvinyl polyamine gel had a porous and irregular bulk structure and was endowed with water storage. With the temperature rising from 30 °C to 60 °C, the transmittance of diethylenetriamine hydrogel decreased from 84.3% to 18.8%, indicating that a phase transition had occurred. After the polyvinyl polyamine hydrogel with low initial viscosity was injected into the formation in the liquid phase, the increase of the reservoir temperature caused it to turn into an elastomer, thereby migrating to the depth of the reservoir and achieving effective plugging. Polyvinyl polyamine hydrogel could improve the profile of heterogeneous layers significantly by forcing subsequent fluids into the low permeability zone in the form of elastomers in the medium temperature reservoirs of 40–60 °C. The novel environmentally responsive polyvinyl polyamine hydrogels, capable of phase transformation with temperature, exhibited superior performance in recovering residual oil, which was beneficial for applications in reservoir profile control and oilfield development.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3