Development of the Gemini Gel-Forming Surfactant with Ultra-High Temperature Resistance to 200 °C

Author:

Liu Peng,Dai Caili,Gao Mingwei,Wang Xiangyu,Liu Shichun,Jin Xiao,Li Teng,Zhao Mingwei

Abstract

In order to broaden the application of clean fracturing fluid in ultra-high temperature reservoirs, a surfactant gel for high-temperature-resistant clean fracturing fluid was developed with a gemini cationic surfactant as the main agent in this work. As the fracturing fluid, the rheological property, temperature resistance, gel-breaking property, filtration property, shear recovery performance and core damage property of surfactant gel were systematically studied and evaluated. Results showed the viscosity of the system remained at 25.2 mPa·s for 60 min under a shear rate of 170 s−1 at 200 °C. The observed core permeability damage rate was only 6.23%, indicating low formation damage after fracturing. Due to micelle self-assembly properties in surfactant gel, the fluid has remarkable shear self-repairability. The filtration and core damage experimental results meet the national industry standard for fracturing fluids. The gel system had simple formulation and excellent properties, which was expected to enrich the application of clean fracturing fluid in ultra-high temperature reservoirs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3