Development and Gelation Mechanism of Ultra-High-Temperature-Resistant Polymer Gel

Author:

Ma Zhenfeng12,Zhao Mingwei12,Yang Ziteng12,Wang Xiangyu12,Dai Caili12

Affiliation:

1. National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China

2. Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China

Abstract

To expand the applicability of gel fracturing fluids in ultra-high-temperature reservoirs, a temperature-resistant polymer was synthesized using the solution polymerization method. Subsequently, an ultra-high-temperature-resistant polymer gel was formulated by incorporating an organic zirconium crosslinking agent. A comprehensive investigation was carried out to systematically study and evaluate the steady shear property, dynamic viscoelasticity, and temperature and shear resistance performance, as well as the core damage characteristics of the polymer gel. The obtained results demonstrate that the viscosity remained at 147 mPa·s at a temperature of 200 °C with a shear rate of 170 s−1. Compared with the significant 30.9% average core damage rate observed in the guanidine gum fracturing fluid, the core damage attributed to the polymer gel was substantially mitigated, measuring only 16.6%. Finally, the gelation mechanism of the polymer gel was scrutinized in conjunction with microscopic morphology analysis. We expect that this study will not only contribute to the effective development of deep and ultradeep oil and gas reservoirs but also furnish a theoretical foundation for practical field applications.

Funder

National Natural Science Foundation of China

Taishan Scholar Young Expert

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3