Affiliation:
1. National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China
2. Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China
Abstract
To expand the applicability of gel fracturing fluids in ultra-high-temperature reservoirs, a temperature-resistant polymer was synthesized using the solution polymerization method. Subsequently, an ultra-high-temperature-resistant polymer gel was formulated by incorporating an organic zirconium crosslinking agent. A comprehensive investigation was carried out to systematically study and evaluate the steady shear property, dynamic viscoelasticity, and temperature and shear resistance performance, as well as the core damage characteristics of the polymer gel. The obtained results demonstrate that the viscosity remained at 147 mPa·s at a temperature of 200 °C with a shear rate of 170 s−1. Compared with the significant 30.9% average core damage rate observed in the guanidine gum fracturing fluid, the core damage attributed to the polymer gel was substantially mitigated, measuring only 16.6%. Finally, the gelation mechanism of the polymer gel was scrutinized in conjunction with microscopic morphology analysis. We expect that this study will not only contribute to the effective development of deep and ultradeep oil and gas reservoirs but also furnish a theoretical foundation for practical field applications.
Funder
National Natural Science Foundation of China
Taishan Scholar Young Expert
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献