Abstract
The extended target probability hypothesis density (ET-PHD) filter cannot work well if the density of measurements varies from target to target, which is based on the measurement set partitioning algorithms employing the Mahalanobis distance between measurements. To tackle the problem, two measurement set partitioning approaches, the shared nearest neighbors similarity partitioning (SNNSP) and SNN density partitioning (SNNDP), are proposed in this paper. In SNNSP, the shared nearest neighbors (SNN) similarity, which incorporates the neighboring measurement information, is introduced to DP instead of the Mahalanobis distance between measurements. Furthermore, the SNNDP is developed by combining the DBSCAN algorithm with the SNN similarity together to enhance the reliability of partitions. Simulation results show that the ET-PHD filters based on the two proposed partitioning algorithms can achieve better tracking performance with less computation than the compared algorithms.
Funder
Natural Science Foundation of Ningxia
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献