Abstract
Plant diseases must be identified at the earliest stage for pursuing appropriate treatment procedures and reducing economic and quality losses. There is an indispensable need for low-cost and highly accurate approaches for diagnosing plant diseases. Deep neural networks have achieved state-of-the-art performance in numerous aspects of human life including the agriculture sector. The current state of the literature indicates that there are a limited number of datasets available for autonomous strawberry disease and pest detection that allow fine-grained instance segmentation. To this end, we introduce a novel dataset comprised of 2500 images of seven kinds of strawberry diseases, which allows developing deep learning-based autonomous detection systems to segment strawberry diseases under complex background conditions. As a baseline for future works, we propose a model based on the Mask R-CNN architecture that effectively performs instance segmentation for these seven diseases. We use a ResNet backbone along with following a systematic approach to data augmentation that allows for segmentation of the target diseases under complex environmental conditions, achieving a final mean average precision of 82.43%.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献