Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit

Author:

Lyousfi Nadia,Letrib Chaimaa,Legrifi Ikram,Blenzar Abdelali,El Khetabi Assia,El Hamss HajarORCID,Belabess Zineb,Barka Essaid AitORCID,Lahlali RachidORCID

Abstract

Simultaneous treatment with antagonistic bacteria Bacillus amylolquefaciens (SF14), Alcaligenes faecalis (ACBC1), and the food additive sodium bicarbonate (SBC) to control post-harvest brown rot disease caused by Monilinia fructigena, and their effect on the post-harvest quality of nectarines were evaluated. Four concentrations of SBC (0.5, 2, 3.5, and 5%) were tested. Results showed that bacterial antagonists displayed remarkable compatibility with different concentrations of SBC and that their viability was not affected. The results obtained in vitro and in vivo bioassays showed a strong inhibitory effect of all treatments. The combination of each bacterial antagonist with SBC revealed a significant improvement in their biocontrol efficacies. The inhibition rates of mycelial growth ranged from 60.97 to 100%. These results also indicated that bacterial antagonists (SF14 or ACBC1) used at 1 × 108 CFU/ mL in combination with 2, 3.5, or 5% SBC significantly improved the control of M. fructigina by inhibiting the germination of spores. Interestingly, disease incidence and lesion diameter in fruits treated with SF14, ACBC1 alone, or in combination with SBC were significantly lower than those in the untreated fruits. In vivo results showed a significant reduction in disease severity ranging from 9.27 to 64.83% compared to the untreated control, while maintaining the appearance, firmness, total soluble solids (TSS), and titratable acidity (TA) of fruits. These results suggested that the improved disease control by the two antagonistic bacteria was more likely due to the additional inhibitory effects of SBC on the mycelial growth and spore germination of the pathogenic fungus. Overall, the combination of both bacteria with SBC provided better control of brown rot disease. Therefore, a mixture of different management strategies can effectively control brown rot decay on fruits.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3