Optimal Sizing of Standalone Photovoltaic System Using Improved Performance Model and Optimization Algorithm

Author:

Khatib TamerORCID,Muhsen Dhiaa HalbootORCID

Abstract

A standalone photovoltaic system mainly consists of photovoltaic panels and battery bank. The use of such systems is restricted mainly due to their high initial costs. This problem is alleviated by optimal sizing as it results in reliable and cost-effective systems. However, optimal sizing is a complex task. Artificial intelligence (AI) has been shown to be effective in PV system sizing. This paper presents an AI-based standalone PV system sizing method. Differential evolution multi-objective optimization is used to find the optimal balance between system’s reliability and cost. Two objective functions are minimized, the loss of load probability and the life cycle cost. A numerical algorithm is used as a benchmark for the proposed method’s speed and accuracy. Results indicate that the AI algorithm can be successfully used in standalone PV systems sizing. The proposed method was roughly 27 times faster than the numerical method. Due to AI algorithm’s random nature, the proposed method resulted in the exact optimal solution in 6 out of 12 runs. Near-optimal solutions were found in the other six runs. Nevertheless, the nearly optimal solutions did not introduce major departure from optimal system performance, indicating that the results of the proposed method are practically optimal at worst.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3