A Multiple Agile Satellite Staring Observation Mission Planning Method for Dense Regions

Author:

Huang Weiquan1,Wang He1ORCID,Yi Dongbo1,Wang Song1,Zhang Binchi1,Cui Jingwen1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

To fully harness the burgeoning array of in-orbit satellite resources and augment the efficacy of dynamic surveillance of densely clustered terrestrial targets, this paper delineates the following methodologies. Initially, we leverage the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm to aggregate the concentrated terrestrial targets, taking into account the field-of-view peculiarities of agile staring satellites. Subsequently, we architect a model for a synergistic multiple angle earth observation satellites (AEOSs) mission planning with the optimization objectives of observational revenue, minimal energy expenditure, and load balancing, factoring in constraints such as target visibility time window, AEOSs maneuverability, and satellite storage. To tackle this predicament, we propose an improved heuristic ant colony optimization (ACO) algorithm, utilizing the task interval, task priority, and the length of time a task can start observation as heuristic information. Furthermore, we incorporate the notion of the max–min ant system to regulate the magnitude of pheromone concentration, and we amalgamate global and local pheromone update strategies to expedite the convergence rate of the algorithm. We also introduce the Lévy flight improved pheromone evaporation coefficient to bolster the algorithm’s capacity to evade local optima. Ultimately, through a series of simulation experiments, we substantiate the significant performance improvements achieved by the improved heuristic ant colony algorithm compared to the standard ant colony algorithm. We furnish proof of its efficacy in resolving the planning of multiple AEOS staring observation missions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3